102 research outputs found

    Processor-in-the-loop architecture design and experimental validation for an autonomous racing vehicle

    Get PDF
    Self-driving vehicles have experienced an increase in research interest in the last decades. Nevertheless, fully autonomous vehicles are still far from being a common means of transport. This paper presents the design and experimental validation of a processor-in-the-loop (PIL) architecture for an autonomous sports car. The considered vehicle is an all-wheel drive full-electric single-seater prototype. The retained PIL architecture includes all the modules required for autonomous driving at system level: environment perception, trajectory planning, and control. Specifically, the perception pipeline exploits obstacle detection algorithms based on Artificial Intelligence (AI), and the trajectory planning is based on a modified Rapidly-exploring Random Tree (RRT) algorithm based on Dubins curves, while the vehicle is controlled via a Model Predictive Control (MPC) strategy. The considered PIL layout is implemented firstly using a low-cost card-sized computer for fast code verification purposes. Furthermore, the proposed PIL architecture is compared in terms of performance to an alternative PIL using high-performance real-time target computing machine. Both PIL architectures exploit User Datagram Protocol (UDP) protocol to properly communicate with a personal computer. The latter PIL architecture is validated in real-time using experimental data. Moreover, they are also validated with respect to the general autonomous pipeline that runs in parallel on the personal computer during numerical simulation

    Exploring the role of skeletal muscle in insulin resistance: lessons from cultured cells to animal models

    Get PDF
    Skeletal muscle is essential to maintain vital functions such as movement, breathing, and thermogenesis, and it is now recognized as an endocrine organ. Muscles release factors named my-okines, which can regulate several physiological processes. Moreover, skeletal muscle is particularly important in maintaining body homeostasis, since it is responsible for more than 75% of all insulin-mediated glucose disposal. Alterations of skeletal muscle differentiation and function, with subse-quent dysfunctional expression and secretion of myokines, play a key role in the pathogenesis of obesity, type 2 diabetes, and other metabolic diseases, finally leading to cardiometabolic complica-tions. Hence, a deeper understanding of the molecular mechanisms regulating skeletal muscle function related to energy metabolism is critical for novel strategies to treat and prevent insulin resistance and its cardiometabolic complications. This review will be focused on both cellular and animal models currently available for exploring skeletal muscle metabolism and endocrine func-tion

    MR blockade protects against diet induced obesity, adipocyte dysfunction and cardiac inflammation in mice, through browning of the adipose organ and modulation of autophagy

    Get PDF
    Obesity is a key factor in the development of insulin resistance (IR), cardiovascular disease, hypertension, type 2 diabetes etc. Given the near epidemic incidence of obesity in western society there is a clear need for effective treatment options. Mineralocorticoid receptor (MR) blockade has shown significant promise in transgenic mouse models of obesity in limiting IR and adipocyte dysfunction, a disease that is independent of classical MR actions (renal). Female 10-weekold C57bl6 mice were fed with normal chow or a high fat (HF) diet for 12 weeks. Mice fed HF diet were concomitantly treated for 12 weeks with drospirenone (DRSP, 6 mg/kg/day), a potent MR antagonist with antiadipogenic activity, or spironolactone (SPIRO, 20 mg/kg/day). Mice fed HF diet showed a significant increase in total body weight, fat mass, mean adipocyte size, expression of white adipose tissue (WAT) marker genes and showed impaired glucose tolerance after intraperitoneal plasma glucose tolerance test. DRSP and SPIRO prevented weight gain and white fat mass expansion induced by HF diet in parametrial, perivescical, and inguinal depots without affecting interscapular fat pad weight. Magnetic Resonance Imaging (MRI) confirmed that MR antagonists blocked the HF dietdriven expansion of abdomino-pelvic (parametrial and perivescical) fat volume. High levels of MR mRNA were detected in all depots of adipose tissue. HF fed mice showed no increase in heart or kidney weight and tissue fibrosis. Cardiac macrophage recruitment and osteopontin staining was increased in hearts of HF fed mice and reversed by both MR antagonists. Moreover, both DRSP and SPIRO prevented the impaired glucose tolerance in mice fed HF diet, and countered HF diet-induced up-regulation of WAT markers transcripts and adipocyte hypertrophy. Importantly, MR antagonists increased uncoupling protein 1 (UCP-1) positive brown-like adipocyte content in WAT, and improved metabolic activity of adipose tissue, as indicated by PET/CT imaging. In keeping with this, MR antagonism significantly increased expression of brown-like adipocyte marker genes such PRDM16, CIDEA, beta-3 adrenergic receptor (ADRB3) and UCP-1 in all WAT depots analysed. In exploring the mechanism, we demonstrated that MR antagonism induced brown adipose tissue (BAT) markers, and reduced the autophagic rate, a key remodelling process in adipocyte differentiation, in WAT depots in vivo as well as in primary cultured adipocytes. We conclude that adipocyte MR regulates BAT-like remodeling of WAT through modulation of autophagy. MR blockade therefore has promise as a novel therapeutic option for the prevention of metabolic dysfunctions and the cardiac consequences of obesity. doi:10.1016/j.ijcme.2015.05.012 Transcriptional control of ICAM-1 in human coronary artery endothelial cells by Mineralocorticoid Receptor (MR): Implications for the protective effects of MR antagonists in cardiovascular diseases V. Marzolla, A. Armani, A. Fabbri, I.Z. Jaffe, M. Caprio Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Pisana, Rome, Italy Department of Medicina dei Sistemi, Endocrinology Unit, S. Eugenio & CTO A. Alesini Hospitals, University Tor Vergata, Rome, Italy Molecular Cardiology Research Institute, Tufts Medical Center, Boston

    Influence of Nutritional Status and Physical Exercise on Immune Response in Metabolic Syndrome

    Get PDF
    Metabolic Syndrome (MetS) is a cluster of metabolic alterations mostly related to visceral adiposity, which in turn promotes glucose intolerance and a chronic systemic inflammatory state, characterized by immune cell infiltration. Such immune system activation increases the risk of severe disease subsequent to viral infections. Strong correlations between elevated body mass index (BMI), type-2-diabetes and increased risk of hospitalization after pandemic influenza H1N1 infection have been described. Similarly, a correlation between elevated blood glucose level and SARS-CoV-2 infection severity and mortality has been described, indicating MetS as an important predictor of clinical outcomes in patients with COVID-19. Adipose secretome, including two of the most abundant and well-studied adipokines, leptin and interleukin-6, is involved in the regulation of energy metabolism and obesity-related low-grade inflammation. Similarly, skeletal muscle hormones—called myokines—released in response to physical exercise affect both metabolic homeostasis and immune system function. Of note, several circulating hormones originate from both adipose tissue and skeletal muscle and display different functions, depending on the metabolic context. This review aims to summarize recent data in the field of exercise immunology, investigating the acute and chronic effects of exercise on myokines release and immune system function

    Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis

    Get PDF
    Upper limb impairments can occur in patients with multiple sclerosis, affecting daily living activities; however there is at present no definite agreement on the best rehabilitation treatment strategy to pursue. Moreover, motor training has been shown to induce changes in white matter architecture in healthy subjects.This study aimed at evaluating the motor behavioral and white matter microstructural changes following a 2-month upper limb motor rehabilitation treatment based on task-oriented exercises in patients with multiple sclerosis.Thirty patients (18 females and 12 males; age. = 43.3. ±. 8.7. years) in a stable phase of the disease presenting with mild or moderate upper limb sensorimotor deficits were randomized into two groups of 15 patients each. Both groups underwent twenty 1-hour treatment sessions, three times a week. The "treatment group" received an active motor rehabilitation treatment, based on voluntary exercises including task-oriented exercises, while the "control group" underwent passive mobilization of the shoulder, elbow, wrist and fingers.Before and after the rehabilitation protocols, motor performance was evaluated in all patients with standard tests. Additionally, finger motor performance accuracy was assessed by an engineered glove.In the same sessions, every patient underwent diffusion tensor imaging to obtain parametric maps of fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. The mean value of each parameter was separately calculated within regions of interest including the fiber bundles connecting brain areas involved in voluntary movement control: the corpus callosum, the corticospinal tracts and the superior longitudinal fasciculi.The two rehabilitation protocols induced similar effects on unimanual motor performance, but the bimanual coordination task revealed that the residual coordination abilities were maintained in the treated patients while they significantly worsened in the control group (p. = 0.002). Further, in the treatment group white matter integrity in the corpus callosum and corticospinal tracts was preserved while a microstructural integrity worsening was found in the control group (fractional anisotropy of the corpus callosum and corticospinal tracts: p. = 0.033 and p. = 0.022; radial diffusivity of the corpus callosum and corticospinal tracts: p. = 0.004 and p. = 0.008). Conversely, a significant increase of radial diffusivity was observed in the superior longitudinal fasciculi in both groups (p. = 0.02), indicating lack of treatment effects on this structure, showing damage progression likely due to a demyelination process.All these findings indicate the importance of administering, when possible, a rehabilitation treatment consisting of voluntary movements. We also demonstrated that the beneficial effects of a rehabilitation treatment are task-dependent and selective in their target; this becomes crucial towards the implementation of tailored rehabilitative approaches. © 2013 The Authors

    Tyrosol may prevent obesity by inhibiting adipogenesis in 3T3-L1 preadipocytes

    Get PDF
    Tyrosol (TR), a major polyphenol found in extra virgin olive oil (EVOO), exerts several antioxidant effects. However, only scarce evidences are present regarding its activity on adipocytes and obesity. This study evaluated the role of TR in adipogenesis. Murine 3T3-L1 preadipocytes were incubated with TR (300 and 500 μM), and TR administration inhibited adipogenesis by downregulation of several adipogenic factors (leptin and aP2) and transcription factors (C/EBPα, PPARγ, SREBP1c, and Glut4) and by modulation of the histone deacetylase sirtuin 1. After complete differentiation, adipocytes treated with 300 and 500 μM TR showed a reduction of 20% and 30% in lipid droplets, respectively. Intracellular triglycerides were significantly reduced after TR treatment (p < 0.05). Mature adipocytes treated with TR at 300 and 500 μM showed a marked decrease in the inflammatory state and oxidative stress as shown by the modulation of specific biomarkers (TNF, IL6, ROS, and SOD2). TR treatment also acted on the early stage of differentiation by reducing cell proliferation (~40%) and inducing cell cycle arrest during Mitotic Expansion Clonal (first 48 h of differentiation), as shown by the increase in both S1 phase and p21 protein expression. We also showed that TR induced lipolysis by activating the AMPK-ATGL-HSL pathway. In conclusion, we provided evidence that TR reduces 3T3-L1 differentiation through downregulation of adipogenic proteins, inflammation, and oxidative stress. Moreover, TR may trigger adipose tissue browning throughout the induction of the AMPK-ATGL-UCP1 pathway and, subsequently, may have promise as a potential therapeutic agent for the treatment and prevention of obesity

    Brain mapping-aided supratotal resection (Sptr) of brain tumors: The role of brain connectivity

    Get PDF
    Brain gliomas require a deep knowledge of their effects on brain connectivity. Understanding the complex relationship between tumor and functional brain is the preliminary and fundamental step for the subsequent surgery. The extent of resection (EOR) is an independent variable of surgical effectiveness and it correlates with the overall survival. Until now, great efforts have been made to achieve gross total resection (GTR) as the standard of care of brain tumor patients. However, high and low-grade gliomas have an infiltrative behavior and peritumoral white matter is often infiltrated by tumoral cells. According to these evidences, many efforts have been made to push the boundary of the resection beyond the contrast-enhanced lesion core on T1w MRI, in the so called supratotal resection (SpTR). SpTR is aimed to maximize the extent of resection and thus the overall survival. SpTR of primary brain tumors is a feasible technique and its safety is improved by intraoperative neuromonitoring and advanced neuroimaging. Only transient cognitive impairments have been reported in SpTR patients compared to GTR patients. Moreover, SpTR is related to a longer overall and progression-free survival along with preserving neuro-cognitive functions and quality of life

    An integrated model of school students’ academic achievement and life satisfaction. Linking soft skills, extracurricular activities, self-regulated learning, motivation, and emotions

    Get PDF
    The role of soft skills at school is still debated, but they have emerged as important factors for students’ academic achievement and life satisfaction. This study focuses on the combined influence of soft skills (in terms of adaptability, curiosity, leadership, initiative, perseverance, and social awareness), extracurricular activities, achievement emotions, self-regulated learning, motivation, and cognitive abilities on academic achievement and life satisfaction. A sample of 603 students (5th to 12th graders) participated in the study. The results of a Bayesian path analysis based on meta-analytical priors show that soft skills were (i) directly positively associated with students’ achievement emotions, self-regulated learning, motivation, and life satisfaction and (ii) indirectly related with academic achievement through the mediation of self-regulated learning and motivation. On the other hand, only soft skills and achievement emotions were directly related to life satisfaction. Extracurricular activities showed a positive association with both soft skills and cognitive abilities. These results are the first to demonstrate the importance of soft skills and extracurricular activities when integrating all the above-mentioned factors in a model of students’ academic achievement and life satisfaction
    • …
    corecore